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Aim and subject of study  

 The aim of the paper is to study via a numerical 
experiment two effective approaches for improving the 
spatial resolution of fluorescence molecular 
tomography (FMT).     

 First: Development and testing of the time-domain FMT model 
based on the use of early arriving diffuse photons (hereafter EP-
FMT model) 

 Second: Solving the FMT inverse problem with the use of the state-
of-the-art image reconstruction algorithms based on compressed 
sensing (CS) theory   

 Here we apply two algebraic-reconstruction-based CS 
algorithms for solving the EP-FMT inverse problem and 
compare them with respect to image reconstruction 
accuracy.      
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Reconstruction model  

 Reconstruction model of EP-FMT is described by the linear 
integral Fredholm equation of the first kind in the form 
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is the measurement datum,   

are the temporal point spread functions for exiting 
radiation and fluorescence, respectively,    
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( )afµ r is the fluorophore absorption coefficient.   
[1] A.B. Konovalov et al.  Proc. 7th Int. Symp. TPB-19, 46-47 (2019) 
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Sensitivity function 
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 The sensitivity function responsible for the reconstruction 
of the fluorophore absorption coefficient is written in 
the form 

are the optical and fluorescence parameters of the 
object, respectively,   

is the derivative in the direction of the internal normal to the 
boundary at the signal registration point. 

is the Green function of the diffusion equation for 
exiting radiation,   

( , )eG t t′ ′− −r r

/ η∂ ∂

[1] A.B. Konovalov et al.  Proc. 7th Int. Symp. TPB-19, 46-47 (2019) 
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Fiber probe and scanning scheme 

view of the probe from the end 
adjacent to the mouse back   

[1] A.B. Konovalov et al.  Proc. 7th Int. Symp. TPB-19, 46-47 (2019) 

2 mm   

The probe scans a 2D region of interest 20x20 mm2 in 
size and collects data in reflectance geometry.      

scanning scheme   
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Three probe positions in scanning 

initial position   interim position   final position   

The working source-receiver (SR) links used for 
reconstruction are shown in red and green.      

[1] A.B. Konovalov et al.  Proc. 7th Int. Symp. TPB-19, 46-47 (2019) 
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Discretization of the Fredholm equation 

Let an unknown              be defined by a 3D discrete array            
                 on a Cartesian mesh of cubic cells of size         

( )afµ r
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Then for the discrete measurement datum        for source 
and receiver     we obtain        
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matrix element and can be presented analytically as  
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[1] A.B. Konovalov et al.  Proc. 7th Int. Symp. TPB-19, 46-47 (2019) 
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Analytical representation for  ( ),
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[1] A.B. Konovalov et al.  Proc. 7th Int. Symp. TPB-19, 46-47 (2019) 
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The reconstruction problem setup 

.=Wμ g

Let               be a known array of measurement data,   
where     and      are the numbers of receivers and sources 
used for reconstruction. Let us organize all measurement 
data into a vector       of length                 , all unknown 
discrete values of                    into a vector       of length 
                      , and all weight coefficients                         into 
a sensitivity matrix        of size            . Then the EP-FMT 
inverse problem reduces to finding a solution for an 
unknown vector        from the system of linear algebraic 
equations  
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[1] A.B. Konovalov et al.  Proc. 7th Int. Symp. TPB-19, 46-47 (2019) 
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The numerical phantoms we study 

The scattering objects shaped as boxes have two spherical fluorescent 
inclusions forming the periodical structures. The diameters of 
inclusions are 0.5, 0.2, and 0.1 mm. The depths are 3 and 6 mm. 

For modeling the measurement data, we use the well-known software 
package NIRFAST [2]. The values of time gates are 100 and 150 ps. 
They correspond to the SR links of 8 and 10 mm, respectively. 

enlarged 3D fragment full phantom 

0.214 mm / psc =
0.194 mmD =

1γ =
1000 psτ =

10.01 mmafµ −=

[2] H. Dehghani et al. Commun. Numer. Meth. Eng. 25(6): 711-732 (2009) 
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Our reconstruction algorithms 

 We study and compare two algebraic-reconstruction-
based CS algorithms.      

 Algorithm 1: the algebraic reconstruction technique 
(ART) with total variation (TV) regularization, ART-TV  

[3] H. Yu & G. Wang. Phys. Med. Biol. 54(9): 2791-2805 (2009) 
[4] V.V. Vlasov et al. J. Electron. Imaging 27(4): 043006 (2018) 

 Algorithm 2: the ART with fast iterative shrinkage 
thresholding (FIST),  ART-FIST, which is our 
modification of the well-known fast iterative shrinkage 
thresholding algorithm (FISTA)    

[5] A. Beck & M. Teboulle. SIAM J. Imaging Sci. 2(1): 183-202 (2009) 
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ART-TV: description (Slide 1) 

[3] H. Yu & G. Wang. Phys. Med. Biol. 54(9): 2791-2805 (2009) 

  ART-TV states and solves the optimization problem 

|| ||TV⋅ is the TV-norm,    2|| ||⋅ is the L2 or Euclidean norm,    
σ is the parameter that describes the noise level.    

m| n| || iTV →μ where   2|| || ,σ− ≤Wμ gsubject  to   (1)   

  Problem (1) is solved implicitly in two steps. In the first 
step (ART-step), the standard  ART with          iterations 
is used to reconstruct the image approximation           
by the formula 
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ART-TV: description (Slide 2) 

[6] A.B. Konovalov & V.V. Vlasov Proc. SPIE 9917: 99170S (2016) 

  The second step (TV-step) involves implicit minimization 
of the TV-norm of the image           with the standard 
steepest descent algorithm which preforms       gradient 
iterations by the formula 

( )artSμ

( , )
( , 1) ( , ) || ||art tv

art tv art tv
S s

S s S s TV
r r

r

µ µ α
µ

+ ∂
= −

∂
μ

,      where                                    

tvS

is the iteration step.  α

  The TV-norm and its gradient are calculated using the 
formulas of the smoothed isotropic ART-TV version 
which is in rather detail described in [6]. 

  Then a cycle of external iterations is organized, where 
the ART- and TV- steps successively alternate. 
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ART-FIST: description (Slide 1) 

  ART-FIST states and solves the optimization problem 

1|| ||⋅ is the L1 or Manhattan norm.    
1| n| || mi→μ where   2|| || ,σ− ≤Wμ gsubject  to   (3)   

  Problem (3) is solved by the Lagrange method  in 
two steps. In the first step (ART-step), the ART with          
iterations is used to reconstruct the image 
approximation           by formula (2), where all 
working SR links are gone over once. 

 In the second step (shrink-step), the shrinkage 
thresholding operator is applied to “shrink” the 
image      

K

( )Kμ

( )Kμ

[5] A. Beck & M. Teboulle. SIAM J. Imaging Sci. 2(1): 183-202 (2009) 
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ART-FIST: description (Slide 2)  
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μ μ
is the regularization parameter.  β

where                                    

[5] A. Beck & M. Teboulle. SIAM J. Imaging Sci. 2(1): 183-202 (2009) 

 Then a cycle of external iterations is organized, where 
the ART- and shrink- steps successively alternate. 

 The feature of ART-FIST is the acceleration procedure, 
where the              approximation           is calculated as 
a linear combination of         and            in order to make 
the algorithm converge faster [5].      

( 1)s + − ( 1)s+μ
( )sμ ( 1)s−μ
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Strategy for algorithm study 

  We first reconstruct all six phantoms with use of ART-
TV and ART-FIST from ideal measurement data, i.e., 
measurement data free of noise. 

 The best algorithm is chosen through the visual 
analysis of resulted reconstructions. 

 Just this algorithm is then tested for resistance to 
noise. 

 In accord with [7], about 10-20% of maximum of the typical 
temporal point spread function correspond to relative 
noise of about 3%. So, additive Gaussian noise with zero 
mean and relative root-mean-square deviation 3% is 
applied to measurement data .   

[7] F. Leblond et al. J. Opt. Soc. Am. A 26(6): 1444-1457 (2009) 
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Reconstruction results (Slide 1) 

inclusions of 0.5 mm in diameter at depth 3 mm, noise 0% 

z-slice   y-slice   
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Reconstruction results (Slide 2) 

inclusions of 0.5 mm in diameter at depth 6 mm, noise 0% 

z-slice   y-slice   
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Reconstruction results (Slide 3) 

inclusions of 0.2 mm in diameter at depth 3 mm, noise 0% 

z-slice   y-slice   
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Reconstruction results (Slide 4) 

inclusions of 0.2 mm in diameter at depth 6 mm, noise 0% 

z-slice   y-slice   
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Reconstruction results (Slide 5) 

inclusions of 0.1 mm in diameter at depth 3 mm, noise 0% 

z-slice   y-slice   
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Reconstruction results (Slide 6) 

inclusions of 0.1 mm in diameter at depth 6 mm, noise 0% 

z-slice   y-slice   
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Reconstruction results (Slide 7) 

ART-FIST, depth 3 mm, noise 3% 

z-slice   y-slice   
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Reconstruction results (Slide 8) 

ART-FIST, depth 6 mm, noise 3% 

z-slice   y-slice   
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Profiles for the y-slices of 3D tomograms  

ART-FIST, inclusions 0.2 mm, depth 3 mm (left) and 6 mm (right)   

 The modulation transfer coefficients evaluated for the red profiles 
make up 20% (left) and 24% (right), respectively. This means that 
according to the Foucault-Rayleigh criterion, we confirm that the 
resolution of 0.2 mm is achievable if relative noise in measurement 
data is no higher than ~3%.   

true   
noise 0%   
noise 3%   
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Conclusions 

 From ideal measurement data ART-FIST reproduces 
fine structures (fluorescent inclusions of 0.2 and 0.1 
mm in size) much more accurately than ART-TV. 

 If measurement data are not free of noise, ART-FIST 
excellently reproduces the inclusions of 0.5 mm but 
has some problems with reproducing the fine structures. 

 Nevertheless, the results show that our EP-FMT 
method with ART-FIST is capable of achieving as good 
spatial resolution as 0.2 mm at depths to 6 mm 
inclusive. Given that this resolution is very close to 
that of mesoscopic FMT, our result can be thought as 
quite satisfactory.    
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